Theme 2: Modeling, Data Assimilation, and Advanced Computing

Zoltan Toth

Summary and Way Forward

Outline

- Review of scientific highlights from oral presentations
 - Links with strategic plans
 - Societal impact of research
- Preview of poster presentations
 - Selected applications

Major initiatives in response to societal/scientific challenges

NOAA Strategic Plan 2009-2014 - State of the Art Research

- •Long-term Recognizes emerging issues & opportunities
- •Short-term Increases the effectiveness of existing activities

Data Assimilation

- Pioneering ESRL research contributions
 - Fine resolution analyses (1-10 km scale)
 moving toward Warn-On-Forecast applications
 - Inclusion of new data types, e.g. surface and moisture-related observations, GPS-Met
 - Frequent updates in support of aviation, e.g. improved situational awareness

- Case-specific ensemble-based background error covariance, e.g. Hybrid EnKF and 3 or 4DVAR
- Wide range of NOAA, national & international users & sponsors, i.e.
 NCEP, WFOs, USAF, Army operations using (LAPS)
- Coordinated planning with NOAA & external partners
- NOAA 5-yr Research Plan Performance Objective & Research Milestone
 Improve predictability of the onset, duration, and impact of hazardous and high-impact severe weather and water events Determine viability of different data assimilation approaches

Numerical Modeling

- Main thrust highest accuracy in transport processes
 - Very fine resolution regional and global model development for aviation, hurricane, pollutant transport applications
 - •Optimal choice of horizontal and vertical discretization, e.g. icosahedral-hexagonal grid or quasi-Lagrangian vertical coordinate
 - Coupling with ocean and air chemistry allows Earth system approach over timescales from minutes to months
- Weather, climate, and emerging Earth system modeling applications

Impact on NCEP operations with (RUC)

- •NOAA 5-yr Research Plan Objective & Research Milestone
 - •Increase lead time & accuracy for weather & water warnings & forecasts Provide integrated environmental information and services in collaboration with NCEP, NCAR & GFDL

Forecast Uncertainty

- New ensemble & decision-support methods
 - Fine resolution ensemble systems for aviation and hydrological applications
 - Statistical post-processing techniques for reliable and precise probabilistic forecasts
 - Comprehensive ensemble forecast database for use by professional decision-support systems
 - Ensemble forecast display and interrogation tools for NWS and broader user community
- In response to societal needs Impact Decision Support system
- In collaboration with NWS Forecast Uncertainty program and AMS Ad Hoc Committee on Uncertainty in Forecasting

- •NOAA 5-yr Research Plan Objectives & Research Milestones
 - •Increase application and accessibility of weather and water information Provide decision-support services based upon probabilistic model guidance
 - •Reduce uncertainty associated with weather & water decision tools ...better ensemble and statistical post-processing techniques

Advanced Computing

- Boulder HPC Facility vital to ESRL research & development
 - Supports numerical modeling and data assimilation work - portability, performance, interoperability
- Explores new & faster technologies
 - Massively Parallel Processor (MPP, 1992)
 - Linux Clusters (2000)
 - GPUs (2008) Next generation super-computers
- Benefits ESRL, NOAA & wider community
 IT development Impact Use of GPU technology (34 times faster)
- Developed as integral part of NOAA HPC infrastructure

•Increase development, application, and transition of advanced science and technology to operations and services

Preview of Posters

- Data assimilation
 - Multiscale variational approach for optimal use of data with varying scales
 Yuanfu Xie STMAS
 - Ensemble-based scheme as an alternative to variational approaches
 Jeff Whitaker EnKF
 - Hourly updating analysis/forecast system for aviation
 Ming Hu RR/HRRR
 - Improved use of GOES moisture information
 - Dan Birkenheuer Via GPS data

- High performance computing
 - HPC developments in support of numerical modeling activities
 Craig Tierney
 - Graphics Processing Units for enabling science
 Jacques Middlecoff NIM application

NOAA Strategic Plan 2009-2014 – working with partners ...widespread computing and model accessibility will ... accelerate our ability to understand, describe, assess and predict the environment

Preview of Posters - 2

Numerical modeling

- Coupled global atmosphere-ocean-chemistry model-pollutant transport etc.
 Georg Grell FIM-Chem
- Physics parameterization research for multiscale applications
 - -Jian-Wen Bao FIM model development
- Vertical coordinates & transport
 Rainer Bleck FIM application
- Nonhydrostatic modeling
 - Jin Lee NIM
- •Fire / chemical modeling •Steven Peckham – HRRR

Forecast uncertainty

Probabilistic products for convective processes
 Curtis Alexander – Built on RUC/HRRR infrastructure

NOAA Annual Guidance Memo 2009 – Core Competencies to Strengthen improvements in forecasts ... for ... high-impact events ... create more effective decision support capabilities and to better convey forecast risk and uncertainty

Emerging Needs - 1

- Societal challenge
 - Seamless forecast system from minutes to months
- Scientific challenge
 - Fully coupled Earth system model development

ESRL response

- Ocean, biosphere, cryosphere, chemical model development for weather / global scales – Complement GFDL climate modeling
- 2-way coupled regional models for high impact event forecasting
 In collaboration with NSSL, AOML, ARL
- •NOAA 20-yr Research Vision

Holistic Earth system models is a major goal of NOAA research in the next 20 years

Emerging Needs - 2

- Societal challenges
 - Air traffic congestion due to convective events
 - Inadequate lead time for severe weather warnings
- Scientific challenge
 - Resolve convective initiation for Warn-On-Forecast
- ESRL response
 - Innovative research into
 - Cloud-scale & boundary layer modeling Partnering with NSSL
 - New observing systems and techniques
 - Non-Gaussian data assimilation
 - Potential applications
 - NextGen in aviation and improved severe weather warnings

•NOAA 20-yr Research Vision

•Tornado track forecasts at sub-county level with one hour or more lead time

Automated Surface Front Detection and NWS HPC Frontal Analysis

Emerging Needs - 3

- Societal challenge
 - Forecast uncertainty information needed for decision-sup
- Scientific challenge
 - Reliable and precise ensemble / probabilistic forecasts
- ESRL response
 - Multiscale coupled ensemble system development
 - EnKF, stochastic modeling
 - New statistical post-processing methods
 - Communication of forecast uncertainty
 - Applications
 - Ensemble Testbed at Developmental Testbed Center

NOAA 20-yr Research Vision

Decision support tools to affect transit time, delivery reliability, efficiency, cost of goods transported, and the health of the environment

Summary - Way Forward

- ESRL has been pioneering new observing / modeling / computer architectures for NWP
 - From hours to days, mostly regional scales
 - Major contributions to NWS/NCEP and other user groups
 - In strong partnership with other NOAA Labs, NCAR, NASA, universities
- Opportunities emerging at intersection of science & technology
- ESRL's vision for continued high quality & socially relevant research
 - Coupled atmosphere-land-ocean-chemistry global modeling
 - Minutes to months timescale
 - Innovative use of emerging observing & computing technologies
 - In strong collaboration with partners and users
- •NOAA 20-yr Research Vision
 - •Advanced real-time observational systems coupled with electronic charts, navigation systems, & forecast models

